Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Front Immunol ; 14: 1161571, 2023.
Article in English | MEDLINE | ID: covidwho-2318058

ABSTRACT

The magnitude and duration of immune response to COVID-19 vaccination in older adults are known to be adversely affected due to immunosenescence and inflammaging. The threat of emerging variants warrants studies on immune response in older adults to primary vaccination and booster doses so as to understand the effectiveness of vaccines in countering the threat of emerging variants. Non-human primates (NHPs) are ideal translational models, as the immunological responses in NHPs are similar to those in humans, so it enables us to understand host immune responses to the vaccine. We initially studied humoral immune responses in aged rhesus macaques employing a three-dose regimen of BBV152, an inactivated SARS-CoV-2 vaccine. Initially, the study investigated whether the third dose enhances the neutralizing antibody (Nab) titer against the homologous virus strain (B.1) and variants of concern (Beta and Delta variants) in aged rhesus macaques immunized with BBV152, adjuvanted with Algel/Algel-IMDG (imidazoquinoline). Later, we also attempted to understand cellular immunity in terms of lymphoproliferation against γ-inactivated SARS-CoV-2 B.1 and delta in naïve and vaccinated rhesus macaques after a year of the third dose. Following the three-dose regimen with 6 µg of BBV152 with Algel-IMDG, animals had increased Nab responses across all SARS-CoV-2 variants studied, which suggested the importance of booster dose for the enhanced immune response against SARS-CoV-2-circulating variants. The study also revealed the pronounced cellular immunity against B.1 and delta variants of SARS-CoV-2 in the aged rhesus macaques even after a year of vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Aged , Macaca mulatta , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing
3.
Infect Genet Evol ; 111: 105432, 2023 07.
Article in English | MEDLINE | ID: covidwho-2293208

ABSTRACT

Outbreaks of HFMD in children aged <5 years have been reported worldwide and the major causative agents are Coxsackievirus (CV) A16, enterovirus (EV)-A71 and recently CVA6. In India, HFMD is a disease that is not commonly reported. The purpose of the study was to identify the enterovirus type(s) associated with large outbreak of Hand, foot, and mouth disease during COVID-19 pandemic in 2022. Four hundred and twenty five clinical samples from 196-suspected cases were collected from different parts of the country. This finding indicated the emergence of CVA6 in HFMD along with CVA16, soon after the gradual easing of non-pharmaceutical interventions during-pandemic COVID-19 and the relevance of continued surveillance of circulating enterovirus types in the post-COVID pandemic era.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Child , Humans , Hand, Foot and Mouth Disease/epidemiology , Pandemics , COVID-19/epidemiology , Enterovirus/genetics , Enterovirus Infections/epidemiology , Disease Outbreaks , India/epidemiology , China/epidemiology
5.
Indian J Med Res ; 155(1): 105-122, 2022 01.
Article in English | MEDLINE | ID: covidwho-2201769

ABSTRACT

The WHO emergency use-listed (EUL) COVID-19 vaccines were developed against early strains of SARS-CoV-2. With the emergence of SARS-CoV-2 variants of concern (VOCs) - Alpha, Beta, Gamma, Delta and Omicron, it is necessary to assess the neutralizing activity of these vaccines against the VOCs. PubMed and preprint platforms were searched for literature on neutralizing activity of serum from WHO EUL vaccine recipients, against the VOCs, using appropriate search terms till November 30, 2021. Our search yielded 91 studies meeting the inclusion criteria. The analysis revealed a drop of 0-8.9-fold against Alpha variant, 0.3-42.4-fold against Beta variant, 0-13.8-fold against Gamma variant and 1.35-20-fold against Delta variant in neutralization titres of serum from the WHO EUL COVID-19 vaccine recipients, as compared to early SARS-CoV-2 isolates. The wide range of variability was due to differences in the choice of virus strains selected for neutralization assays (pseudovirus or live virus), timing of serum sample collection after the final dose of vaccine (day 0 to 8 months) and sample size (ranging from 5 to 470 vaccinees). The reasons for this variation have been discussed and the possible way forward to have uniformity across neutralization assays in different laboratories have been described, which will generate reliable data. Though in vitro neutralization studies are a valuable tool to estimate the performance of vaccines against the backdrop of emerging variants, the results must be interpreted with caution and corroborated with field-effectiveness studies.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Viral Envelope Proteins
6.
J Med Virol ; 95(2): e28484, 2023 02.
Article in English | MEDLINE | ID: covidwho-2173238

ABSTRACT

The apprehension of needles related to injection site pain, risk of transmitting bloodborne pathogens, and effective mass immunization have led to the development of a needle-free injection system (NFIS). Here, we evaluated the efficacy of the NFIS and needle injection system (NIS) for the delivery and immunogenicity of DNA vaccine candidate ZyCoV-D in rhesus macaques against SARS-CoV-2 infection. Briefly, 20 rhesus macaques were divided into 5 groups (4 animals each), that is, I (1 mg dose by NIS), II (2 mg dose by NIS), III (1 mg dose by NFIS), IV (2 mg dose by NFIS) and V (phosphate-buffer saline [PBS]). The macaques were immunized with the vaccine candidates/PBS intradermally on Days 0, 28, and 56. Subsequently, the animals were challenged with live SARS-CoV-2 after 15 weeks of the first immunization. Blood, nasal swab, throat swab, and bronchoalveolar lavage fluid specimens were collected on 0, 1, 3, 5, and 7 days post infection from each animal to determine immune response and viral clearance. Among all the five groups, 2 mg dose by NFIS elicited significant titers of IgG and neutralizing antibody after immunization with enhancement in their titers postvirus challenge. Besides this, it also induced increased lymphocyte proliferation and cytokine response. The minimal viral load post-SARS-CoV-2 challenge and significant immune response in the immunized animals demonstrated the efficiency of NFIS in delivering 2 mg ZyCoV-D vaccine candidate.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Animals , SARS-CoV-2 , Macaca mulatta , Antibodies, Neutralizing , Antibodies, Viral , Immunogenicity, Vaccine
7.
Hum Vaccin Immunother ; 18(7): 2156753, 2022 12 30.
Article in English | MEDLINE | ID: covidwho-2166142

ABSTRACT

We have evaluated the immunogenicity of two dose of Covaxin given at a one-month interval to two adult populations, i.e. COVID-19 naïve-vaccinated individuals (n = 118) and COVID-19 recovered individuals (n = 128) with the vaccination. The immune response in the study population were assessed at three follow-ups, namely at one month post first dose, one and six months after the second dose. The persistence of S1RBD IgG and neutralizing antibodies for six months post vaccination was observed at different time intervals. The enhanced immune response was observed in both the participant groups. The study emphasizes the need for a booster dose post six months of vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Immunogenicity, Vaccine
8.
Front Med (Lausanne) ; 9: 955930, 2022.
Article in English | MEDLINE | ID: covidwho-2123424

ABSTRACT

Background: Recent studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reveal that Omicron variant BA.1 and sub-lineages have revived the concern over resistance to antiviral drugs and vaccine-induced immunity. The present study aims to analyze the clinical profile and genome characterization of the SARS-CoV-2 variant in eastern Uttar Pradesh (UP), North India. Methods: Whole-genome sequencing (WGS) was conducted for 146 SARS-CoV-2 samples obtained from individuals who tested coronavirus disease 2019 (COVID-19) positive between the period of 1 January 2022 and 24 February 2022, from three districts of eastern UP. The details regarding clinical and hospitalized status were captured through telephonic interviews after obtaining verbal informed consent. A maximum-likelihood phylogenetic tree was created for evolutionary analysis using MEGA7. Results: The mean age of study participants was 33.9 ± 13.1 years, with 73.5% accounting for male patients. Of the 98 cases contacted by telephone, 30 (30.6%) had a travel history (domestic/international), 16 (16.3%) reported having been infected with COVID-19 in past, 79 (80.6%) had symptoms, and seven had at least one comorbidity. Most of the sequences belonged to the Omicron variant, with BA.1 (6.2%), BA.1.1 (2.7%), BA.1.1.1 (0.7%), BA.1.1.7 (5.5%), BA.1.17.2 (0.7%), BA.1.18 (0.7%), BA.2 (30.8%), BA.2.10 (50.7%), BA.2.12 (0.7%), and B.1.617.2 (1.3%) lineages. BA.1 and BA.1.1 strains possess signature spike mutations S:A67V, S:T95I, S:R346K, S:S371L, S:G446S, S:G496S, S:T547K, S:N856K, and S:L981F, and BA.2 contains S:V213G, S:T376A, and S:D405N. Notably, ins214EPE (S1- N-Terminal domain) mutation was found in a significant number of Omicron BA.1 and sub-lineages. The overall Omicron BA.2 lineage was observed in 79.5% of women and 83.2% of men. Conclusion: The current study showed a predominance of the Omicron BA.2 variant outcompeting the BA.1 over a period in eastern UP. Most of the cases had a breakthrough infection following the recommended two doses of vaccine with four in five cases being symptomatic. There is a need to further explore the immune evasion properties of the Omicron variant.

9.
BMC Infect Dis ; 22(1): 856, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2116356

ABSTRACT

BACKGROUND: Increased occurrence of mucormycosis during the second wave of COVID-19 pandemic in early 2021 in India prompted us to undertake a multi-site case-control investigation. The objectives were to examine the monthly trend of COVID-19 Associated Mucormycosis (CAM) cases among in-patients and to identify factors associated with development of CAM. METHODS: Eleven study sites were involved across India; archived records since 1st January 2021 till 30th September 2021 were used for trend analysis. The cases and controls were enrolled during 15th June 2021 to 30th September 2021. Data were collected using a semi-structured questionnaire. Among 1211 enrolled participants, 336 were CAM cases and 875 were COVID-19 positive non-mucormycosis controls. RESULTS: CAM-case admissions reached their peak in May 2021 like a satellite epidemic after a month of in-patient admission peak recorded due to COVID-19. The odds of developing CAM increased with the history of working in a dusty environment (adjusted odds ratio; aOR 3.24, 95% CI 1.34, 7.82), diabetes mellitus (aOR: 31.83, 95% CI 13.96, 72.63), longer duration of hospital stay (aOR: 1.06, 95% CI 1.02, 1.11) and use of methylprednisolone (aOR: 2.71, 95% CI 1.37, 5.37) following adjustment for age, gender, occupation, education, type of houses used for living, requirement of ventilatory support and route of steroid administration. Higher proportion of CAM cases required supplemental oxygen compared to the controls; use of non-rebreather mask (NRBM) was associated as a protective factor against mucormycosis compared to face masks (aOR: 0.18, 95% CI 0.08, 0.41). Genomic sequencing of archived respiratory samples revealed similar occurrences of Delta and Delta derivates of SARS-CoV-2 infection in both cases and controls. CONCLUSIONS: Appropriate management of hyperglycemia, judicious use of steroids and use of NRBM during oxygen supplementation among COVID-19 patients have the potential to reduce the risk of occurrence of mucormycosis. Avoiding exposure to dusty environment would add to such prevention efforts.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , SARS-CoV-2 , India/epidemiology , Case-Control Studies
10.
Vaccines (Basel) ; 10(11)2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2116010

ABSTRACT

The unique mutations of the SARS-CoV-2 Omicron variant are associated with increased transmissibility, immune escape, increased binding affinity to ACE-2, and increased viral load. Omicron exhibited a shift in tropism infecting the upper respiratory tract compared to other variants of concern which have tropism for the lower respiratory tract. The tropism of omicron variants in cell lines of different hosts and tissue origins still remains unclear. Considering this, we assessed the susceptibility of different cell lines to the SARS-CoV-2 omicron BA.1.1 variant and permissiveness among different cell lines for omicron replication. Susceptibility and permissiveness of a total of eleven cell lines, including six animal cell lines and five human cell lines for omicron BA.1.1 infection, were evaluated by infecting individual cell lines with omicron BA.1.1 isolate at a 0.1 multiplicity of infection. Virus replication was assessed by observation of cytopathic effects followed by viral load determination by real-time PCR assay and virus infectivity determination by TCID50 assay. The characteristic cytopathic effect, increased viral load, and productive omicron replication was detected in Vero CCL-81, Vero E6, Vero/hSLAM, MA-104, and Calu-3 cells. Although LLC MK-2 cells showed an increased TCID50 titer at the second infection, the viral load did not show much difference in both infections. Caco-2 cells did not show evident CPE, but they supported omicron replication at a low level. A549, RD, MRC-5, and BHK-21 cells supported omicron BA.1.1 replication without the CPE. This is the first study on the comparison of susceptibility of different cell lines to Omicron variant BA.1.1, which might be useful for future studies on emerging SARS-CoV-2 variants.

11.
Front Public Health ; 10: 1030249, 2022.
Article in English | MEDLINE | ID: covidwho-2099281

ABSTRACT

SARS-CoV-2 can be shed in feces and can enter sewage systems. In order to implement effective control measures and identify new channels of transmission, it is essential to identify the presence of infectious virus particles in feces and sewage. In this study, we attempt to utilize Molecular techniques, cell cultures and animal models to find out the infectivity of SARS-CoV-2 in the feces of COVID-19 patients. Our findings exclude the presence of infectious virus particles, suggesting that fecal-oral transmission may not be the main mode of transmission. Larger-scale initiatives are nevertheless required, particularly considering the emergence of new viral strains.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Sewage , RNA, Viral , Feces
12.
Front Med (Lausanne) ; 9: 888408, 2022.
Article in English | MEDLINE | ID: covidwho-2065554

ABSTRACT

Background: Omicron, a new variant of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2), was first detected in November 2021. This was believed to be highly transmissible and was reported to evade immunity. As a result, an urgent need was felt to screen all positive samples so as to rapidly identify Omicron cases and isolate them to prevent the spread of infection. Genomic surveillance of SARS-CoV-2 was planned to correlate disease severity with the genomic profile. Methods: All the SARS-CoV-2 positive cases detected in the state of Rajasthan were sent to our Lab. Samples received from 24 November 2021 to 4 January 2022 were selected for Next-Generation Sequencing (NGS). Processing was done as per protocol on the Ion Torrent S5 System for 1,210 samples and bioinformatics analysis was done. Results: Among the 1,210 samples tested, 762 (62.9%) were Delta/Delta-like and other lineages, 291 (24%) were Omicron, and 157 (12.9%) were invalid or repeat samples. Within a month, the proportion of Delta and other variants was reversed, 6% Omicron became 81%, and Delta and other variants became 19%, initially all Omicron cases were seen in international travelers and their contacts but soon community transmission was seen. The majority of patients with Omicron were asymptomatic (56.7%) or had mild disease (33%), 9.2% had moderate symptoms, and two (0.7%) had severe disease requiring hospitalization, of which one (0.3%) died and the rest were (99.7%) recovered. History of vaccination was seen in 81.1%, of the previous infection in 43.2% of cases. Among the Omicron cases, BA.1 (62.8%) was the predominant lineage followed by BA.2 (23.7%) and B.1.529 (13.4%), rising trends were seen initially for BA.1 and later for BA.2 also. Although 8.9% of patients with Delta lineage during that period were hospitalized, 7.2% required oxygen, and 0.9% died. To conclude, the community spread of Omicron occurred in a short time and became the predominant circulating variant; BA.1 was the predominant lineage detected. Most of the cases with Omicron were asymptomatic or had mild disease, and the mortality rate was very low as compared to Delta and other lineages.

13.
Hum Vaccin Immunother ; : 2127289, 2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2051158

ABSTRACT

We have investigated six COVID-19 recovered cases with two doses of Covishield vaccination followed by reinfection. The primary SARS-CoV-2 infection found to occur with B.1 and reinfection with Omicron BA.1 and BA.2 variants. The genomic characterization and duration between two infections confirms these cases as SARS-CoV-2 reinfection. The immune response determined at different time intervals demonstrated boost post two dose vaccination, decline in pre-reinfection sera post 7 months and rise post reinfection. In conclusion, it was observed that these cases got SARS-CoV-2 reinfection with declined hybrid immunity acquired from primary infection and two dose covishield vaccination. This findings suggests the need to protect the community through booster dose of vaccination and prevent further infections following personal hygiene and non-pharmaceutical interventions.

14.
iScience ; 25(10): 105178, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2041842

ABSTRACT

The immunity acquired after natural infection or vaccinations against SARS-CoV-2 tend to wane with time. Here, we compared the protective efficacy of COVAXIN® following two- and three-dose immunizations against the Delta variant and also studied the efficacy of COVAXIN® against Omicron variants in a Syrian hamster model. Despite the comparable neutralizing antibody response against the homologous vaccine strain in both the two-dose and three-dose immunized groups, considerable reduction in the lung disease severity was observed in the 3 dose immunized group after Delta variant challenge. In the challenge study using the Omicron variants, i.e., BA.1.1 and BA.2, lesser virus shedding, lung viral load and lung disease severity were observed in the immunized groups. The present study shows that administration of COVAXIN® booster dose will enhance the vaccine effectiveness against the Delta variant infection and give protection against the BA.1.1 and BA.2 variants.

16.
Vaccines (Basel) ; 10(6)2022 Jun 17.
Article in English | MEDLINE | ID: covidwho-1988037

ABSTRACT

We estimated the effectiveness of two doses of the ChAdOx1 nCoV-19 (Covishield) vaccine against any COVID-19 infection among individuals ≥45 years in Chennai, Tamil Nadu, India. A community-based cohort study was conducted from May to September 2021 in a selected geographic area in Chennai. The estimated sample size was 10,232. We enrolled 69,435 individuals, of which 21,793 were above 45 years. Two-dose coverage of Covishield in the 18+ and 45+ age group was 18% and 31%, respectively. Genomic analysis of 74 out of the 90 aliquots collected from the 303 COVID-19-positive individuals in the 45+ age group showed delta variants and their sub-lineages. The vaccine's effectiveness against COVID-19 disease in the ≥45 age group was 61.3% (95% CI: 43.6-73.4) at least 2 weeks after receiving the second dose of Covishield. We demonstrated the effectiveness of two doses of the ChAdOx1 vaccine against the delta variant in the general population of Chennai. We recommend similar future studies considering emerging variants and newer vaccines. Two-dose vaccine coverage could be ensured to protect against COVID-19 infection.

17.
EBioMedicine ; 79: 103997, 2022 May.
Article in English | MEDLINE | ID: covidwho-1977198

ABSTRACT

BACKGROUND: SARS-CoV-2 Omicron variant is rampantly spreading across the globe. We assessed the pathogenicity and immune response generated by BA.1.1 sub-lineage of SARS-CoV-2 [Omicron (R346K) variant] in 5 to 6-week old Syrian hamsters and compared the observations with that of Delta variant infection. METHODS: Virus shedding, organ viral load, lung disease and immune response generated in hamsters were sequentially assessed. FINDINGS: The disease characteristics of the Omicron (R346K) variant were found to be similar to that of the Delta variant infection in hamsters like viral replication in the respiratory tract and interstitial pneumonia. The Omicron (R346K) infected hamsters demonstrated lesser body weight reduction and viral RNA load in the throat swab and nasal wash samples in comparison to the Delta variant infection. The viral load in the lungs and nasal turbinate samples and the lung disease severity of the Omicron (R346K) infected hamsters were found comparable with that of the Delta variant infected hamsters. Neutralizing antibody response against Omicron (R346K) variant was detected from day 5 and the cross-neutralization titre of the sera against other variants showed severe reduction ie., 7 fold reduction against Alpha and no titers against B.1, Beta and Delta. INTERPRETATION: This preliminary data shows that Omicron (R346K) variant infection can produce moderate to severe lung disease similar to that of the Delta variant and the neutralizing antibodies produced in response to Omicron (R346K) variant infection shows poor neutralizing ability against other co-circulating SARS-CoV-2 variants like Delta which necessitates caution as it may lead to increased cases of reinfection. FUNDING: This study was supported by Indian Council of Medical Research as an intramural grant (COVID-19) to ICMR-National Institute of Virology, Pune.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Cricetinae , Humans , India , Mesocricetus , Virulence
19.
Int J Infect Dis ; 122: 693-702, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1936536

ABSTRACT

OBJECTIVES: India introduced BBV152/Covaxin and AZD1222/Covishield vaccines in January 2021. We estimated the effectiveness of these vaccines against severe COVID-19 among individuals aged ≥45 years. METHODS: We did a multi-centric, hospital-based, case-control study between May and July 2021. Cases were severe COVID-19 patients, and controls were COVID-19 negative individuals from 11 hospitals. Vaccine effectiveness (VE) was estimated for complete (2 doses ≥ 14 days) and partial (1 dose ≥ 21 days) vaccination; interval between two vaccine doses and vaccination against the Delta variant. We used the random effects logistic regression model to calculate the adjusted odds ratios (aOR) with a 95% confidence interval (CI) after adjusting for relevant known confounders. RESULTS: We enrolled 1143 cases and 2541 control patients. The VE of complete vaccination was 85% (95% CI: 79-89%) with AZD1222/Covishield and 71% (95% CI: 57-81%) with BBV152/Covaxin. The VE was highest for 6-8 weeks between two doses of AZD1222/Covishield (94%, 95% CI: 86-97%) and BBV152/Covaxin (93%, 95% CI: 34-99%). The VE estimates were similar against the Delta strain and sub-lineages. CONCLUSION: BBV152/Covaxin and AZD1222/Covishield were effective against severe COVID-19 among the Indian population during the period of dominance of the highly transmissible Delta variant in the second wave of the pandemic. An escalation of two-dose coverage with COVID-19 vaccines is critical to reduce severe COVID-19 and further mitigate the pandemic in the country.


Subject(s)
COVID-19 , Influenza Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , ChAdOx1 nCoV-19 , Hospitals , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL